website statistics

Math

Question

a^2+1/a^2=14 a is not equal to 0 4a^3+4/a^3 +2a+2/a​

1 Answer

  • Correct Question :-

    If a² + 1/a² = 14, then find 4a³ + 4/a³ + 2a + 2/a.

    Answer :-

    4a³ + 4/a³ + 2a + 2/a = 216

    Solution :-

    4a³ + 4/a³ + 2a + 2/a

    ⇒ 4(a³ + 1/a³) + 2(a + 1/a)

    First find the value of a + 1/a

    a² + 1/a² = 14

    Adding 2 on both sides

    ⇒ a² + 1/a² + 2 = 14 + 2

    ⇒ a² + 1/a² + 2 = 16

    ⇒ (a)² + (1/a)² + 2(x)(1/x) = 16

    ⇒ (a + 1/a)² = 16

    [Since (a + b)² = a² + b² + 2ab]

    ⇒ a + 1/a = √16

    ⇒ a + 1/a = 4

    Now find the value of a³ + 1/a³

    Now cubing on both sides

    (a + 1/a)³ = (4)³

    ⇒ (a + 1/a)³ = 64

    ⇒ (a)³ + (1/a)³ + 3(a)(1/a)(a + 1/a) = 64

    [Since (a + b)³ = a³ + b³ + 3ab(a + b) ]

    ⇒ a³ + 1³/a³ + 3(a + 1/a) = 64

    ⇒ a³ + 1/a³ + 3(a + 1/a) = 64

    ⇒ a³ + 1/a³ + 3(4) = 64

    [Since a + 1/a = 4]

    ⇒ a³ + 1/a³ + 12 = 64

    ⇒ a³ + 1/a³ = 64 - 12

    ⇒ a³ + 1/a³ = 52

    Now Consider 4(a³ + 1/a³) + 2(a + 1/a)

    Here we got to know

    • a + 1/a = 4

    • a³ + 1/a³ = 52

    By substituting the values

    = 4(52) + 2(4)

    = 208 + 8

    = 216

    4(a³ + 1/a³) + 2(a + 1/a) = 216

    ⇒ 4a³ + 4/a³ + 2a + 2/a = 216

You May Be Interested